Intermolecular DNA interactions stimulated by the cohesin complex in vitro Implications for sister chromatid cohesion

نویسندگان

  • Ana Losada
  • Tatsuya Hirano
چکیده

The establishment of sister chromatid cohesion during S phase and its dissolution at the metaphase-anaphase transition are essential for the faithful segregation of chromosomes in mitosis [1-4]. Recent studies in yeast genetics and Xenopus biochemistry have identified a large protein complex, cohesin, that plays a key role in sister chromatid cohesion [5-10]. The cohesin complex consists of a heterodimeric pair of SMC (structural maintenance of chromosomes) subunits and at least two non-SMC subunits. This structural organization is reminiscent of that of condensin, another major SMC protein complex that drives chromosome condensation in eukaryotic cells [11]. Condensin has been shown to reconfigure and compact DNA in vitro by utilizing the energy of ATP hydrolysis [12]. Very little is known, however, about how cohesin works at a mechanistic level. Here we report the first set of biochemical activities associated with an intact cohesin complex purified from HeLa cell extracts. The cohesin complex binds directly to double-stranded DNA and induces the formation of large protein-DNA aggregates. In the presence of topoisomerase II, cohesin stimulates intermolecular catenation of circular DNA molecules. This activity is in striking contrast to intramolecular knotting directed by condensin [13]. Cohesin also increases the probability of intermolecular ligation of linear DNA molecules in the presence of DNA ligase. Our results are consistent with a model in which cohesin functions as an intermolecular DNA crosslinker and is part of the molecular "glue" that holds sister chromatids together [14].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A matter of choice: the establishment of sister chromatid cohesion.

Sister chromatid cohesion is the basis for the recognition of chromosomal DNA replication products for their bipolar segregation in mitosis. Fundamental to sister chromatid cohesion is the ring-shaped cohesin complex, which is loaded onto chromosomes long before the initiation of DNA replication and is thought to hold replicated sister chromatids together by topological embrace. What happens to...

متن کامل

Interallelic complementation provides functional evidence for cohesin–cohesin interactions on DNA

The cohesin complex (Mcd1p, Smc1p, Smc3p, and Scc3p) has multiple roles in chromosome architecture, such as promoting sister chromatid cohesion, chromosome condensation, DNA repair, and transcriptional regulation. The prevailing embrace model for sister chromatid cohesion posits that a single cohesin complex entraps both sister chromatids. We report interallelic complementation between pairs of...

متن کامل

Cohesin loading and sliding.

Cohesin is best known as a crucial component of chromosomal stability. Composed of several essential subunits in budding yeast, cohesin forms a ring-like complex that is thought to embrace sister chromatids, thereby physically linking them until their timely segregation during cell division. The ability of cohesin to bind chromosomes depends on the Scc2-Scc4 complex, which is viewed as a loadin...

متن کامل

Establishment of DNA-DNA Interactions by the Cohesin Ring

The ring-shaped structural maintenance of chromosome (SMC) complexes are multi-subunit ATPases that topologically encircle DNA. SMC rings make vital contributions to numerous chromosomal functions, including mitotic chromosome condensation, sister chromatid cohesion, DNA repair, and transcriptional regulation. They are thought to do so by establishing interactions between more than one DNA. Her...

متن کامل

Brca2, Pds5 and Wapl differentially control cohesin chromosome association and function

The cohesin complex topologically encircles chromosomes and mediates sister chromatid cohesion to ensure accurate chromosome segregation upon cell division. Cohesin also participates in DNA repair and gene transcription. The Nipped-B-Mau2 protein complex loads cohesin onto chromosomes and the Pds5-Wapl complex removes cohesin. Pds5 is also essential for sister chromatid cohesion, indicating tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2001